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ABSTRACT

The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) has

provided the global community a widely used multisatellite (and multisensor type) estimate of quasi-global

precipitation. One of the TMPA level-3 products, 3B42RT/TMPA-RT (where RT indicates real time), is a

merged product of microwave (MW) and infrared (IR) precipitation estimates, which attempts to exploit the

most desirable aspects of both types of sensors, namely, quality rainfall estimation and spatiotemporal res-

olution. This study extensively and systematically evaluates multisatellite precipitation errors by tracking the

sensor-specific error sources and quantifying the biases originating from multiple sensors. High-resolution,

ground-based radar precipitation estimates from the Multi-Radar Multi-Sensor (MRMS) system, developed

by the National Severe Storms Laboratory (NSSL), are utilized as reference data. The analysis procedure

involves segregating the grid precipitation estimate as a function of sensor source, decomposing the bias, and

then quantifying the error contribution per grid. The results of this study reveal that while all three aspects of

detection (i.e., hit, missed-rain, and false-rain biases) contribute to the total bias associated with IR pre-

cipitation estimates, overestimation bias (positive hit bias) and missed precipitation are the dominant error

sources forMWprecipitation estimates. Considering onlyMW sensors, the TRMMMicrowave Imager (TMI)

shows the largest missed-rain and overestimation biases (nearly double that of the other MW estimates) per

grid box during the summer and winter seasons. The Special SensorMicrowave Imagers/Sounders (SSMIS on

board F17 and F16) also show major error during winter and spring, respectively.

1. Introduction

Precipitation is a vital component of the water cycle,

connecting Earth’s surface and atmosphere. It is also a

major input for many hydrological models, as it is the

driving force behind all hydrologic processes on Earth’s

surface. Accurate information regarding the frequency

and quantity of precipitation enables a better un-

derstanding of Earth’s water cycle. In the modern era,

spaceborne platforms have provided insights on the

character of global-scale precipitation. Consequently,

an improved understanding of the error structure of

satellite precipitation estimates at quasi-global scale is

particularly pertinent from a scientific perspective and

would be valuable for numerous hydrometeorological

applications such as quantitative precipitation fore-

casting and numerical weather prediction models (Turk

et al. 1999), flood forecasting and water resources

monitoring (Hong et al. 2007a; Gebregiorgis and

Hossain 2011, 2013), land data assimilation (Gottschalck

et al. 2005; Tian et al. 2007), and landslide prediction

(Hong et al. 2007b).

Precipitation is traditionally measured using various

types of rain gauges. Rain gauges provide direct (in situ)

measurements of precipitation, but the spatial distribu-

tion and density of rain gauge networks is typically far too

coarse to capture the spatial variability of precipitation at

small scales. Moreover, there are very few rain gauges

whose data are available in real time and at high enough
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frequency for hydrologic applications such as flash flood

forecasting. Alternatively, radar, which is generally only

available in the developed nations of the world, provides

an indirect measurement of precipitation with relatively

high spatiotemporal resolution. The useful range of radar

precipitation estimates extends to a few hundred kilo-

meters of the radar site, but the coverage of radars is

limited in mountainous regions because of beam block-

age and in case of shallow, cool season precipitation

systems. Good accuracy of the terrestrial sensors pri-

marily stems from the nature of measurement, that is,

direct measurement with gauges or active remote sensing

with radars. Radar reflectivity provides information

about the size and number density of hydrometeors at

multiple levels in the atmosphere (Kirstetter et al. 2013).

Radar instruments have also been flown on board satel-

lites for precipitation measurement missions. For in-

stance, theTropical RainfallMeasuringMission (TRMM)

Precipitation Radar (PR) operating at 13.8GHz provides

the vertical structure of precipitation systems for the

investigation of its three-dimensional structure, obtain-

ing quantitative measurements over land and ultimately

improving rainfall estimation (Iguchi et al. 2000). Its

successor, the Dual-Frequency Precipitation Radar

(DPR) on board the Global Precipitation Measure-

ment (GPM) mission’s core satellite, is designed to

provide more detailed rain/snow information, including

light rainfall and snowfall in high-latitude regions (Hou

et al. 2014; Huffman et al. 2015). The CloudSat radar

observes the cloud condensate and precipitation

(Stephens et al. 2002). Alternatively, most spaceborne

precipitation estimation relies upon passive sensors,

which provide more indirect information than either

gauges or radar but have the advantage of complete

coverage in remote regions such as over oceans, moun-

tainous regions, and sparsely populated areas where

other sources of precipitation data are not available.

Consequently, satellite precipitation estimates are par-

ticularly useful for identifying hydrometeorological

hazards arising from smaller-scale precipitation features

occurring in sparsely instrumented areas. However,

gauges and radars estimate precipitation from Earth’s

surface and are therefore expected to provide estimates

with better accuracy than orbiting spaceborne sensors.

A plethora of satellite precipitation products is cur-

rently available, and some of the most commonly used

are blended products, which merge precipitation esti-

mates frommicrowave (MW) and infrared (IR) sensors.

One of the most popular multisatellite products, the

TRMM Multisatellite Precipitation Analysis–real time

(TMPA-RT) algorithm, combines multiple independent

precipitation estimates from the TRMM Microwave

Imager (TMI; Kummerow et al. 1998; McCollum and

Ferraro 2003), Advanced Microwave Scanning Radi-

ometer for Earth Observing System (AMSR-E; Shibata

et al. 2003; Turk andMiller 2005;McCollum and Ferraro

2003), Special Sensor Microwave Imager (SSM/I;

Ferraro 1997; Hollinger et al. 1990), Special Sensor

Microwave Imager/Sounder (SSMIS; Sun and Weng

2008), Advanced Microwave Sounding Unit (AMSU;

Vila et al. 2007), Microwave Humidity Sounder (MHS;

Ferraro et al. 2005), and microwave-adjusted merged

geo-infrared (Huffman et al. 2010; Hsu et al. 1997). The

sensors contributing to the TMPA-RT algorithm are

presented in Table 1, and the reader is also referred to

Huffman and Bolvin (2015) for more details.

TABLE 1. List of satellite sensors contributing to TMPA-RT (Huffman and Bolvin 2015). Scan patterns are conical (CN) or cross track

(CT). In the sensor column, SSM/I-F13, SSM/I-F14, and SSM/I-F15 refer to SSM/I on board F13, F14, and F15, respectively. AMSU-B/15,

AMSU-B/16, and AMSU-B/17 refer to AMSU-B on board NOAA-15, NOAA-16, and NOAA-17, respectively. MHS-18 and MHS-19

refer to MHS on board NOAA-18 and NOAA-19, respectively.

Sensor Agency Start date End date Swath width (km) Scan pattern

AMSR-E NASA 19 Jun 2002 3 Oct 2011 1445 CN

SSM/I-F13 DMSP 17 Feb 2000 31 Jul 2009 1394 CN

SSM/I-F14 DMSP 17 Feb 2000 23 Aug 2008 1394 CN

SSM/I-F15 DMSP 23 Feb 2000 13 Aug 2006 1394 CN

SSMIS-F16 DMSP 20 Nov 2005 Present 1707 CN

SSMIS-F17 DMSP 19 Mar 2008 Present 1707 CN

SSMIS-F18 DMSP 8 Mar 2010 Present 1707 CN

AMSU-B/15 NOAA 17 Feb 2000 14 Sep 2010 2178.8 CT

AMSU-B/16 NOAA 4 Oct 2000 30 Apr 2010 2178.8 CT

AMSU-B/17 NOAA 28 Jun 2002 17 Dec 2009 2178.8 CT

MHS-18 NOAA 25 May 2005 Present 2348 CT

MHS-19 NOAA 9 Mar 2009 Present 2348 CT

MetOp-A ESA/EUMETSAT 5 Dec 2006 Present 2348 CT

MetOp-B ESA/EUMETSAT 15 Aug 2013 Present 2348 CT

TMI NASA 27 Nov 1997 8 Apr 2015 759 CN

IR GOES NOAA/CPC 4 km Tb 17 Feb 2000 Present .3000
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Satellite precipitation products are generated from

different algorithm processing levels (Hou et al. 2008).

Level-1 products provide instrument data at full reso-

lution (at sensor footprint scales) and reconstructed and

calibrated radiance/reflectivity swath data with the

computedEarth location. In the case of level-2 products,

the physical parameters in full resolution are derived

preserving the orbital structure. In the TRMM case,

these parameters include the TMI hydrometeor profile,

the PR surface cross section, rain characteristics, rainfall

rate, and profile. The TRMM level-3 products are gen-

erally derived from the level-2 products. These products

are space- and/or time-averaged data, which aremapped

onto grids. Consequently, the grid precipitation estimate

associated with a TRMM level-3 satellite precipitation

product could originate from either a single sensor esti-

mate (MW or IR) or from an average of two or more

sensors’ estimates. This framework allows the retrieval

algorithm to utilize all the available information and ex-

ploit the advantages of each sensor or type of sensor (e.g.,

Hsu et al. 1997; Joyce et al. 2004; Huffman et al. 2007,

2010). On the other side, the uncertainty, which propa-

gates to the level-3 TRMM product, is also the combined

result of all the errors related to these algorithmic pro-

cesses, and it includes both retrieval and sampling errors.

To advance the usefulness of satellite precipita-

tion estimates for hydrometeorological applications,

an improved understanding of the sensor-specific

error characteristics (hereafter used interchangeably

with uncertainty) associated with these multisensor pre-

cipitation estimates is required. Several attempts have

beenmade to quantify the uncertainty of the TMPA-RT

products (e.g., Adler et al. 2001; Gottschalck et al. 2005;

Ebert et al. 2007; Tian and Peters-Lidard 2007; Tian

et al. 2007, 2009; Sapiano and Arkin 2009; Kubota et al.

2009; Tian et al. 2010; Tian and Peters-Lidard 2010;

Gebregiorgis and Hossain 2014, 2015; Tang et al. 2014).

For instance, Tang et al. (2014) validated precipitation

retrievals (level-2 products) from 12 passive MW radi-

ometers independently using high-resolution ground-

based radar data at the instantaneous time scale. Their

results revealed that all MW radiometers overestimate

and underestimate precipitation during the summer and

winter seasons, respectively. Their study also revealed

that the imager products perform (relatively) better

than the sounder products. The majority of the previous

studies focus on the overall error of the TRMM level-3

rain products. In general, the overall error convolves

various aspects such as detection and quantification of

precipitation from a variety of sensors with different

capabilities. The original intent of the present analysis is

to track the contribution of each sensor to the combined

product in order to provide better feedback to the

combined algorithm developers, highlight the perfor-

mance of satellite-only rainfall estimate, and ultimately

improve the precipitation products.

Because a posteriori gauge correction alters the con-

tribution of each sensor and makes diagnostic approach

difficult, the focus is on the satellite-only 3B42RT

(where RT stands for real time) product. To better un-

derstand the nature of uncertainty propagation from

level-2 to level-3 products, first the uncertainty con-

tributed by each individual sensor or group of sensors in

the level-3 product should be characterized and quan-

tified. Therefore, the primary goal of this study is to

quantify the magnitude of the error contributed by

individual/a group of sensor estimates to the merged

level-3 TRMM product. Since the current GPM algo-

rithm is built up on the success of TRMM with almost

the same sensor configurations, the results of this work

are also expected to be valuable in improving our un-

derstanding of error structures in Integrated Multi-

satellite Retrievals for GPM (IMERG) precipitation

estimates (Huffman et al. 2015).

This paper is organized in five sections. Section 2

provides information about the study region and a de-

scription of the satellite and ground-based radar data

used in this study; section 3 details the study method-

ology; and section 4 presents the results and specifically

discusses the accuracy of spatial and temporal variation

of satellite and reference data, the error structure asso-

ciated with the level-3 TRMM product (3B42RT), and

the contribution of error from the individual sensor es-

timates. Finally, section 5 summarizes significant find-

ings and lists potential future research directions.

2. Study region and datasets

a. Description of the study domain and reference
precipitation data

The implementation of weather radar networks over

North America, specifically, the Next Generation

Weather Radar (NEXRAD) network over the United

States, has greatly improved our ability to monitor and

measure surface precipitation (Crum et al. 1993). Be-

cause of the availability of high-quality radar reference

data, this study was conducted over the contiguous

United States (CONUS). The CONUS comprises di-

verse topography that ranges from 0 (South and East

Coast regions) to 4500m (Intermountain West) above

mean sea level. Moreover, the region’s diverse topo-

graphic nature (ranging from lowland and flat flood plains

to high mountains), diverse climatic zones, diverse land

use and land cover, and a wide array of precipitation

systems (tropical and midlatitude cyclones, airmass

thunderstorms, orographic precipitation, supercells, etc.)
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make the study area a good test bed for evaluating the

performance of satellite precipitation algorithms.

The reference precipitation dataset used in this study

is composed of high-resolution ground radar products

from the NOAA/National Severe Storms Laboratory’s

(NSSL) Multi-Radar Multi-Sensor (MRMS) system

(Zhang et al. 2016). MRMS combines information

from all ground-based radars to obtain radar-based

precipitation estimates at high spatial and temporal

resolutions (0.018/2min). It exploits the overlapping

coverage of the WSR-88D network and the level-2 sat-

ellite data feeds to build a seamless rapidly updating,

high-resolution 3D cube of radar data. Objectively, it

blends volumetric radar data with surface, upper air,

lightning, rain gauges, and model analysis fields to pro-

duce severe weather products. For the purpose of

quality control, the dataset includes a radar quality in-

dex (RQI; Zhang et al. 2016), which ranges from 0% to

100% (with 100% corresponding to the highest quality).

The RQI provides some information about the un-

certainty of the radar precipitation estimate resulting

from radar beam sampling characteristics (i.e., beam

blockage, height, and width) and their relationship with

respect to the vertical precipitation profile (Zhang et al.

2011). Chen et al. (2013) quantitatively related the RQI

to errors in the MRMS daily rainfall totals for different

regions in the CONUS. TheMRMS product used in this

study is a gauge-adjusted radar product at the hourly

time scale. Similarly to Kirstetter et al. (2012), a quan-

titative filtering is applied in case of significant discrep-

ancy between radar and gauges at the hourly time steps,

with discarding instances where grid-by-grid ratios be-

tween the hourly gauge-adjusted and the hourly radar-

only products are outside the 0.1–10 range. Hourly

snow occurrence and RQI products are also specifi-

cally derived for satellite evaluation purposes (http://

wallops-prf.gsfc.nasa.gov/NMQ/Docs/DailyProducts.pdf).

These products are then aggregated from their native

resolution (1km/1h) to the TMPA resolution (25km/3h)

for comparison grid by grid. As mentioned in previ-

ous studies (Kirstetter et al. 2015; Carr et al. 2015), it is

important to emphasize the quality in the reference

dataset in an attempt to evaluate and understand the

nature of satellite rainfall error structure. Without high-

quality reference data, it is unlikely to perform proper

assessments and draw meaningful conclusions about the

error structures in satellite rainfall products. To achieve

the objective of this study, we limit the comparisons

to locations that have the highest radar quality index

(i.e., RQI 5 100%), in order to minimize the impact of

errors in the reference datasets on the analysis. Un-

derstandably, applying this conditioning shrinks the

amount of data, which varies from time to time:

minimum during the summer and maximum in winter.

On average, the data have been reduced by 38% during

the entire study period. Three-hourly accumulations of

the MRMS gauge-adjusted radar product are used

hereafter for the evaluation of the TMPA product.

b. Satellite precipitation data

The primary types of precipitation sensors that con-

tribute to the TRMM level-3 product can be partitioned

into three categories: IR imagers, passive microwave

(PMW) radiometers, and the TRMM PR (Kummerow

et al. 1998). Basically, all these types of sensors are on

board the low-Earth-orbiting TRMM satellite and are

designed to provide both independent information

along with the combined products. The Visible and In-

frared Scanner (VIRS) on board TRMM does not pro-

vide precipitation information directly as it is less

reliable; rather, it provides the cloud-top temperature

and structures to support the description obtained by the

MW sensors. Moreover, visible and infrared (VIS/IR)

data from the geostationary satellite platforms provide

frequent and longer time series data that serve an im-

portant role in filling the gaps due to infrequent MW

observations. The VIS/IR data processing first discrim-

inates the brightness of the cloud in the visible spectrum

and/or the low temperature of the cloud top as seen in

the thermal spectrum (Arkin andMeisner 1987). Then it

evaluates further criteria such as cloud area extent, time

history or evolutionary information, and textural fea-

tures to correlate with the rainfall estimates (Adler and

Negri 1988).

Microwave instruments can provide observations of

cloud and precipitation properties, beyond simple

cloud-top quantities. Microwave sensors can be classi-

fied as either active (i.e., radar), passive radiometric

imagers, or sounders (Ferraro et al. 2005). The active

sensors emit their own source of electromagnetic radi-

ation and observe the direct backscattered microwave

radiation from hydrometeors (or other scatterers).

Passive microwave radiometers measure the intensity

(expressed as brightness temperatures) of upwelling

microwave radiation from Earth’s surface and atmo-

sphere. Radiometers can operate in imaging or sounding

modes and are consequently referred to as imagers and

sounders, respectively. While the radiometric imagers

measure and map sea surface, cloud-top, and land sur-

face temperature by scanning across segments of Earth’s

surface and atmosphere, the sounders provide vertical

atmospheric temperature and moisture profiles and

quantitative images of meteorological variables such as

total precipitable water by making vertical soundings of

the atmosphere (Weng et al. 2003). The precipitation

sensor types used by different satellite missions over the
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last 15 years are summarized in Table 1. The sensors

used in precipitation estimation over the CONUS dur-

ing the study period (2013/14) are identified as TMI;

SSMIS on boardF16,F17, andF18 (hereafter referred to

as SSMIS-F16, SSMIS-F17, and SSMIS-F18, re-

spectively); MHS; MetOp-B; AMSU–MHS average;

conical average (as per the scan pattern given in Table

1); and IR (Huffman and Bolvin 2015).

Because of the complimentary nature of IR and MW

sensors, the final satellite precipitation product (level 3)

is ultimately produced by merging the precipitation es-

timates originating from multiple satellite sensors

(Huffman et al. 2007). The MW and combined radar–

radiometer estimates are more accurate because of the

more physically direct relationships that exist between

the precipitation properties and the measured satellite

variables (i.e., MW brightness temperatures or back-

scattered radar reflectivity; Kidd et al. 2003). However,

the principal drawback associated with MW products is

their low temporal sampling frequency, resulting from

their low-Earth orbits. On the other hand, precipitation

estimates from IR sensors generally have lower accu-

racies because of the more ambiguous relationship be-

tween cloud-top temperature (the measured quantity)

and precipitation properties. However, the IR sensors

provide more frequent coverage because of their geo-

synchronous orbits. By exploiting these complimentary

advantages, the merging of precipitation estimates from

multiple sensors significantly improves the spatial and

temporal scales of the final level-3 product. First, the rain

rates from the TRMM combined algorithm (2B31) based

on both PR and TMI estimates are used to calibrate all

available microwave precipitation estimates from the TMI,

SSMIS, SSM/I, AMSR-E, and AMSU-B radiometers

using a histogrammatchingmethod to producemicrowave-

based precipitation estimates (Huffman et al. 2007). IR

precipitation estimates from geostationary platforms

are also calibrated using the TRMM data. Finally, the

two precipitation estimates are merged together to

produce the level-3 TRMM (3B42RT) product. Natu-

rally, the uncertainty inherited in the level-3 satellite

precipitation estimates results from a combination of the

uncertainties associated with all contributing sensors’

retrieval algorithms.

In this study, the sources (sensors or types of sensors)

contributing to the grid’s precipitation estimate have

been identified at the final level-3 product resolutions

(0.258/3 h). To determine the sensor source and ultimate

contribution to the uncertainty in the final level-3 pre-

cipitation product, it is first important to understand the

space–time coverage of the sensors defining their con-

tribution to the TMPA product over the CONUS.

Figure 1 shows the spatial percentage of contribution

from each sensor listed in Table 1 during the 2-yr study

period (from 2 January 2013 to 31 December 2014)

along with the spatial coverage of the reference (radar)

data. The percentage contribution is the frequency in

which the grid’s rainfall estimates originated from the

specific sensor type during the 2-yr period. In general,

the sampling frequencies of the SSMIS-F17 andMetOp-

B sensors are lower over the entire United States (less

than 10%) than the other sensors. For TMI and SSMIS-

F18, the sampling size ranges between 5% and 20%.

Note that, given the orbit of TRMM, the spatial cover-

age of TMI is limited to the subtropical region of the

CONUS. MHS on board the NOAA series satellites

has a slightly wider swath (2348 km, Table 1) and thus

provides good spatial (western, southern, and eastern

parts of theUnited States) and temporal coverage (up to

30%). In case of TMPA-RT, the rainfall estimates pri-

marily come from MW information and then use MW-

calibrated IR data to fill the gaps in the MW coverage.

Therefore, the IR contribution depends on the extent of

MW contribution. In general, the IR contributes less

over the midwestern region of the CONUS and more

over certain parts of the northern and southeastern re-

gions. The reference dataset (MRMS) has moderately

good sampling frequency in the central and eastern parts

of the United States, with its maximum coverage in the

southern part of the study region. MRMS’s coverage is

considerably spottier over the Intermountain West

(Maddox et al. 2002). This spatial coverage pattern is

expected as the RQI is highest when 1) the radar beam is

unobstructed (i.e., not blocked by terrain or buildings),

2) the radar beam is low in the atmosphere (generally

near the radar site), and 3) when the radar beam is below

the freezing level (which occurs most often when the

freezing level is high during warm season months).

Figure 2 highlights the temporal variability of per-

centage of area contribution for MW and IR sensors

over the CONUS. In general, the IR contribution over

the United States is relatively high during the winter

season of 2013/14 (reaches up to 60% in February),

whereas the MW coverage is high from April to No-

vember (with nearly 90% area coverage from June to

September). We speculate that the lesser MW contri-

bution during the winter is related to the presence of

snow and ice cover and weakly scattered MW radiation

during this period. In other words, the emissivity signal

from the terrestrial snow and ice cover impacts on the

measured MW signals during winter, challenging the

extraction of the signal from precipitation.

Figure 3 provides information regarding the area

coverage associated with individual MW sensors for the

months of August 2013 and January 2014. These two

months were chosen to show a representative month
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FIG. 1. Percentage of spatial coverage for MW, IR, and high-quality MRMSQPE during the period of

2013/14. The percentage for each grid box is computed by dividing the number of samples of individual

sensor by the total number of observation during the study period.
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during the summer and winter seasons. In general, TMI,

MHS, SSMIS-F18, the AMSU–MHS average, and the

conical average are the dominant contribution for grid

precipitation estimation. Generally the area coverage of

the MW sensors is consistent in both months, except for

the TMI and MHS sensors. Specifically, the TMI has

somewhat higher area coverage in the month of January

than August and vice versa for the MHS. The basic

feature that we can observe from this plot is the use of

some sensors in the absence of others (i.e., in a gap-

filling way). For instance, whenever TMI is not avail-

able, the gap is mainly covered by MHS, while the

AMSU–MHS average substitutes for the conical aver-

age when it is not available. In summary, the sensor

combinations basically depend on the scan pattern and

the orbit of the platform.

3. Procedure and methodology

The flowchart of the methodology and procedure

followed in this study is presented in Fig. 4. We utilized

three different level-3 TMPA-RT products: 3B40RT,

which is high-quality pure MW rainfall estimates;

3B41RT single IR sensor product, which is calibrated by

high-quality MW rainfall estimates; and 3B42RT, which

is the merged product of MW and IR estimates. The

source of rainfall estimates (sensors type) is also in-

cluded in the data field.

FIG. 2. Percentage of area coverage for MW and IR sensors over the CONUS during the

period of 2013/14. The number of grid boxes sampled by individual sensors is divided by the

total number of grid boxes over CONUS.

FIG. 3. Percentage of area coverage forMW sensors over theUnited States during (top)August

2013 and (bottom) January 2014.
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The rainfall estimates and sensor information were

extracted from the data field of the three products.

Based on the sensor type, the rainfall estimates for each

grid box were separated into nine groups. In some cases,

the rainfall estimate of a single grid box is derived from

an individual sensor and is treated independently. In

other cases, the rainfall estimate results from an aver-

aging of two or more sensors. As an example, the

AMSU–MHS average is the pixel-weighted average of

AMSU-B and MHS estimates. Conical average is the

pixel-weighted average of calibrated conical-scan mi-

crowave radiometer estimates of TMI, SSM/I, SSMIS,

and AMSR. As seen on the right side of the flowchart,

the reference data (MRMS) were aggregated from their

native resolution (0.18/1 h) to TMPA-RT (0.258/3 h)
scales.

The bias estimation and error decomposition scheme

(Tian et al. 2009) was implemented at the individual grid

level. The error decomposition scheme is utilized to

separate the precipitation retrieval errors into three in-

dependent components: hit/estimation bias, missed-rain

bias, and false-rain bias. A hit bias occurs when the

rainfall is detected successfully by the satellite but is not

estimated accurately; negative hit bias indicates un-

derestimation and is positive for overestimation. There

are circumstances whereby the satellite does not detect

the rainfall while there is actual rain on the ground

and vice versa. Such circumstances are called missed-

rain and false-rain bias, respectively. This error de-

composition scheme helps to relate a sensor to an error

component and its relative contribution. Such detailed

error analysis also provides useful feedback to level-2

and level-3 algorithm developers. Often, physically

based precipitation retrieval algorithms utilized by

MW sensors (e.g., GPROF 2010) involve two major

processes: screening for precipitation (precipitation

detection) and rain-rate estimation (precipitation

quantification; Smith et al. 1998). During the screening

(precipitation detection) stage, MW sensors detect

precipitation by utilizing both the emission of MW

radiation by liquid hydrometeors (generally over

oceans) and scattering of MW radiation by ice-phase

FIG. 4. Flowchart of the procedure used in this study. The lhs shows how sensor information is

extracted from three different level-3 TMPA-RT products. The 3B40RT (pureMW estimates)

and 3B42RT (merged estimates) data fields include precipitation estimates and the sensors

type for each grid box at each time step, which helps to segregate the estimates as a function of

sensor types. The rhs indicates the aggregation of MRMS (reference data) from its native

spatiotemporal resolutions to TMPA-RT scales for bias estimation and error decomposition.
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hydrometeors (usually overland). Poor detection of

precipitation at this stage results in either missed-rain or

false-rain biases. The second stage involves utilizing a

precipitation retrieval algorithm to convert the mea-

sured microwave brightness temperatures to rain rate.

The ability of the algorithm to estimate the precipitation

at this stage is contained in the hit bias.

For each grid’s rainfall estimate that originates from a

single ormultiple sensors, the nature, structure, and type

of errors are analyzed in detail. The spatial and temporal

rainfall estimates and error variability are analyzed in-

dependently. Finally, the amount of error per grid con-

tributed to the final level-3 product is quantitatively

described for each precipitation source. For the purpose

of comparison across sensors, the seasonal accumulated

error components were normalized by the number of

grid boxes to compute a sensor error contribution at the

gridbox scale.

4. Results and discussion

The results of this study are organized into four sec-

tions: the temporal and spatial characteristics of the

precipitation, correlation and scalar measures of pre-

cipitation estimates from different sensors, the spatial

and temporal characteristics of error components, and

the magnitude of error contribution from different

sensors. The results presented in Figs. 5–14 (described in

greater detail below) provide a relatively comprehen-

sive picture of the nature of multisensor satellite pre-

cipitation estimates. To facilitate the presentation, the

results are grouped and summarized based on season

(winter, spring, summer, and fall), type of sensor, and

error components.

a. Temporal and spatial precipitation distribution

Figure 5 shows 1) the temporal variation of accumu-

lated precipitation from MW and IR sensors along with

the reference (MRMS) accumulations (Figs. 5a,b) and

2) the spatial distribution of percent bias over the

United States (Figs. 5c,d). To highlight the impact of

quality-controlling the MRMS radar data using the

RQI, results are presented for both the high-quality

radar data (Figs. 5a,c) and the non-quality-controlled

data (Figs. 5b,d). The MW-estimated accumulated pre-

cipitation over the United States is very similar to the

MRMS estimates apart from moderate overestimation

at the end of 2013. However, the IR-based estimates

appear to significantly overestimate precipitation accu-

mulations relative to the reference, particularly during

peak accumulation periods. As discussed previously,

PMW observations are more directly linked to pre-

cipitation properties than IR observations. Consequently,

the IR overestimations may be attributed to cold cirrus

clouds that are associated with low IR brightness tem-

peratures and are thus assigned high rainfall rates by the

retrieval algorithm.

The performance of both the MW and IR products

appears worse in the absence of the radar quality-

control condition (Fig. 5b). This highlights the impor-

tance of quality controlling the reference data prior to

utilizing it for precipitation validation studies. However,

performing sufficient quality control on the reference

data is an often overlooked step in precipitation vali-

dation studies. The spatial percentage bias plots display

high positive biases (satellite overestimation) in the

winter and moderate (in summer and fall) positive bia-

ses over the northern and central eastern parts of the

United States, respectively along with significant nega-

tive biases (satellite underestimation) over the South-

west during summer and fall. During spring, there is

significant underestimation in the northeastern part of

the United States. Without applying the RQI threshold,

significant overestimation would have been inferred

over the coastal and western mountainous regions.

These inferred satellite overestimates are likely the re-

sult from radar-based underestimates arising from radar

beam blockage (particularly over the complex terrain

regions) and beam overshooting (over both coastal and

mountainous regions), which generally occurs at far

ranges from the radar site, or when higher elevation

angles must be utilized to compensate for terrain

obstructions.

Figure 6 displays time series of spatially accumulated

precipitation over regions covered by different MW

sensors along with the corresponding IR and MRMS

estimates. In all locations, IR overestimates pre-

cipitation during the warm season. Focusing on the

passiveMWsensors, TMI consistently overestimates the

peak precipitation regimes. The overestimate is proba-

bly caused by the fact that the TMI rain retrieval algo-

rithm is biased toward higher rainfall rates that are

characteristic for the region of its primary focus. SSMIS-

F17 and SSMIS-F18 also tend to overestimate pre-

cipitation accumulations in the peak accumulation

periods. On the other hand, MHS andMetOp-B capture

both the temporal trend and magnitude of the accu-

mulated precipitation fairly well, except for some minor

underestimation associated withMetOp-B for the June–

September time frame. Multisensor average estimates

(conical and AMSU–MHS averages) also capture the

rainfall trend except the overestimation at a few points.

Density-colored scatterplots of each sensor’s rain es-

timate versus MRMS rainfall are presented in Fig. 7. All

sensors’ estimates share similarities on the distribution

of the rainfall. All satellite sensors overestimate light
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rainfall and have positively skewed rainfall distribu-

tions. The correlation and percent bias show better

agreement with reference data for MHS, SSMIS-F16,

MetOp-B, and AMSU–MHS average rainfall estimates.

b. Performance measures

The performance of the satellite precipitation esti-

mates relative to the ground reference estimates is

evaluated using different correlation and scalar mea-

sures. As seen in Fig. 8, parts of the central and eastern

United States are mainly characterized by positive bias

in the summer and winter seasons for all sensor

estimates except for SSMIS-F17. The bias for the

northern and central plains and mountainous regions is

highly positive in winter for locations where there exists

high-quality radar data. The north, Midwest, New

England, and western coastal regions are mostly charac-

terized by negative bias, particularly in spring. Because

of the small sample size, the spatial bias pattern associ-

ated with SSMIS-F17 and MetOp-B is not as clearly

defined relative to the other sensors. As mentioned

earlier, TMI has positive bias because the TMI algo-

rithm is designed for the tropical areas where the mi-

crophysics of the precipitation is different from the

FIG. 5. Time series of rainfall estimates at 3-h time scale from all MW sensors (blue line), IR (red dotted line), and radar (MRMS; green

shaded area) spatially averaged over the region where MW observation is available for the period of 2013/14 (a) with high-quality

reference dataset and (b) without any quality data condition on reference dataset. (c),(d) The distribution of percent bias with and without

conditioning of high quality of reference data. This figure indicates the impact of quality of reference data on validation and evaluation of

satellite rainfall estimates.
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subtropical and midlatitude regions. During spring, all

products share significant similarities in that they have

negative bias dominating most of the regions of the

CONUS, such as the West Coast and the East Coast,

Midwest, and northern regions. In fact, the un-

derestimation during this season is mainly attributed to

missed precipitation that may be caused by snow cover

on the ground. In the West, orographic and shallow

precipitation structure could also cause some of the

biggest retrieval errors. Satellites often look straight

through the shallow liquid water path of orographic

storms. On the other hand, during the summer and fall

season, most of the sensor estimates have positive bias in

the central and eastern parts of the United States. The

IR has significant positive bias over the northern part of

the CONUS. The overestimation is generally traced to

false precipitation (Fig. 10, described in greater detail

below), possibly due to poorly calibrated IR estimates.

To further evaluate the agreement between the sat-

ellite and reference datasets, correlation coefficient,

Nash–Sutcliffe efficiency, and root-mean-square error

(RMSE) were computed and are displayed in Fig. 9. The

Nash–Sutcliffe efficiency (from2‘ to 1) is a normalized

measure that compares the mean square error of the

rainfall estimated by the satellite to the variance of the

reference data (MRMS). It represents a form of noise-

to-signal ratio, comparing the average variability of the

satellite rainfall estimates to the MRMS. The MW pre-

cipitation estimates are strongly correlated with MRMS

data with a correlation coefficient above 0.8 (0.86 for

SSMIS-F18 and 0.96 for MHS). The correlation co-

efficient for the corresponding IR estimates in regions

whereMW coverage is available ranges between 0.6 and

0.75. For all MW sensors, the Nash–Sutcliffe efficiency

is positive (0.49 for SSMIS-F18 and 0.8 for MHS). In

both correlation measures MHS displays the best

FIG. 6. Time series of rainfall estimates at 3-h time scale from MW and IR sensors with

reference data (MRMS) for the period of 2013/14 over CONUS. In most cases, the satellite

rainfall overestimates the rainfall and the overestimation is significant for the IR sensor.
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performance among all MW sensors. The RMSE mea-

sures the magnitude of the error, and a smaller RMSE

indicates that the satellite precipitation estimate is

closer to the reference estimate. Similar to the correla-

tion measures, the RMSE for passive MW sensors is

lower than the IR RMSE; however, TMI has a compa-

rable RMSE to the IR estimates (same as Fig. 6, top).

c. Error structures in MW and IR sensors

To better track the error sources associated with

multisensor precipitation estimates, it is important to

examine both the characteristics and magnitude of the

error components. As seen in Fig. 10, the magnitude of

all error components for MW sensors is smaller than the

IR during the study period. In case of the passive MW

sensors, the dominant error sources are the missed-rain

and hit biases. The missed-rain bias in passive MW

radiometers is largely due to the poor spatial (due to

diffraction) and temporal (only on board low-Earth-

orbiting platforms) sampling frequencies. The hit bias is

related to the ability of the retrieval algorithm to relate

the brightness temperature Tb to the amount of rain.

This relationship can yield over- or underestimation

depending on the precipitation rate, the nature of the

FIG. 7. Scatterplots of rain rates from different sensors vs reference rainfall (mmh21) with marginal histograms. The colors show

a normalized density as percent of themax count. In each plot, the correlation coefficientR and the percent bias are displayed at the upper-

right corner. Note that the type of sensor is shown on the y axis.

296 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/27/21 03:56 PM UTC



FIG. 8. Percent bias of rainfall estimates from different sensors over the United States during 2013/14.
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FIG. 9. Correlation and scalar measures between rainfall estimates of various sensors and refer-

ence data (MRMS QPE): (top) correlation coefficient, (middle) Nash–Sutcliffe efficiency, and

(bottom) RMSE. For the purpose of comparison, the RMSE is normalized by the number of

grid boxes.
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precipitation (vertical extent), and the microphysics (ice

phase). But in this case, overestimation is particularly

noteworthy during the high rainfall seasons of summer

and fall. In the case of IR, all the error components

significantly contribute to the total error. Particularly,

the false precipitation in the case of IR is 2–10 times

larger than the MW. This highlights the limitations of

the IR retrieval algorithm both in detecting and quan-

tifying precipitation. The magnitude of the error is

generally related to the magnitude of the precipitation

(see Fig. 6), and this finding is consistent with results

from earlier studies (e.g., Huffman 1997; Gebregiorgis

and Hossain 2014).

Figures 11 and 12 present the spatial distribution of

percentage of occurrence of each error component of

the MW and IR estimates for the winter and summer

seasons, respectively. In addition to the three error

components, the figures also present the percentage of

‘‘no error’’ condition that reflects the cases when both

satellite and ground products see no rain. Regarding the

spatial distribution of the occurrence of error compo-

nents, there are common features shared by all sensors.

During the winter, false precipitation is observedmainly

in northern parts of the United States, whereas missed

precipitation is a problem in most of the study domain,

but is particularly significant in the eastern portions of

the domain, including both the northern and south-

eastern United States. The IR estimate shows slightly

higher sampling frequency in the central and eastern

parts of the United States. In addition, the occurrence of

hit bias mainly covers the East Coast region. For the

summer season, the frequency of missed-precipitation

and hit bias is widespread across the region, with high

percentages in the Northeast, Southeast, and Midwest.

The missed-precipitation bias over summer is particu-

larly high over the Intermountain West and the South-

east. This phenomenon could result from shallow

orographic precipitation (over the IntermountainWest)

and (tropical) warm-rain precipitation (over the

Southeast). Both these types of precipitation events

have low concentrations of ice-phase hydrometeors and

thus are difficult to detect by PMW retrieval algorithms

because of the lowmagnitude ice-phase scattering signal

(Shige et al. 2013). Moreover, as mentioned above, the

space–time rainfall structure, which covers small regions

and then disappears quickly, is a challenge for PMW

because of the infrequent sampling time. On top of this,

the narrower coverage of the MW sensors and PR is

another problem to handle the short-lived nature of

convective bursts during the TRMM era.

d. Error contribution from MW and IR sensors

Themain objective of this study is to identify the source

of errors and to quantify their contributions to the total

error in the TRMM level-3 product. These results are

presented based on season and sensor type. As seen in

Fig. 13, the contribution of the error components from

MWand IR sensors are quantified per grid. The error for

the IR estimate is computed both for regions where the

corresponding MW estimate is available and regions

where the MW estimate is unavailable, that is, where IR

is used in the 3B42RT product. The latter scenario is

obviously included in themerged 3B42RT product to gap

fill in regions where MW observations are missing.

Regarding MW precipitation estimates, the major

error sources comprising the total error are positive hit

FIG. 10. Time series of error components at 3-h time scale for (top) MW and (bottom) IR

rainfall estimates, spatially averaged over CONUS. To reduce visual cluttering, a 7-day (56

observations) moving average is applied. The total bias (black line) is the sum of all in-

dependent error components: the hit bias (red line), miss rain (light blue shading), and false rain

(light green shading).

FEBRUARY 2017 GEBREG IORG I S ET AL . 299

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/27/21 03:56 PM UTC



and missed-rain biases. In all seasons, the contribution

of positive hit and missed-rain bias is comparable in

magnitude but of opposite sign. Hence they can com-

pensate for each other, making the total bias smaller

than some of the component errors (e.g., during spring

and summer seasons). The false-rain bias is less than the

other two error components. The largest false-rain bias

fromMWsensors occurs during the winter season, likely

due to the impact of frozen/snow-covered surfaces on

the retrieved MW Tb. The biases from IR estimates are

computed from two different regions: 1) from regions

whereMWestimate is available, that is, the IR estimates

are not used in 3B42RT; and 2) from regions where MW

observations are not available, that is, the IR estimates

are used in 3B42RT. In the case of IR precipitation es-

timates, like PMW, the hit andmissed-rain biases are the

main contributors to the total error for regions where

there are no MW observations. In MW regions, the

FIG. 11. Percentage of occurrence of hit, miss, and false errors during the winter season of 2013/14. Note that the

sum of the percentage of hit, miss, false, and no error add up to 100.
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FIG. 12. As in Fig. 11, but for the summer season of 2013/14.
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false-rain bias from IR estimates is significantly high,

particularly during the summer, and low during the

winter.

To further examine the sources of bias, the error con-

tribution from each individual MW sensor/combinations

of MW sensors is displayed in Fig. 14. The contribution

of error components to the total error can be ranked

(from largest to smallest magnitude) as missed-rain,

positive hit bias, and false-rain biases for all MW

or combination of MW sensors. However, the mag-

nitude of the error varies among the sensor types in

different seasons. For example, during the winter

FIG. 13. The contribution of error components fromMWand IR sensors to the merged level-3

TRMM product (3B42RT) per grid box. To obtain the true total error contribution of each

sensor, the value should be multiplied by the total number of grid box covered by the sensor.
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season, the minimum hit bias originates from the

MetOp-B and the maximum originates from the

SSMIS-F17 and SSMIS-F18. For the same season,

the minimum missed-rain bias comes from MetOp-B

and the maximum from SSMIS-F17; the false-rain bias

minimum is from MetOp-B and the maximum is from

SSMIS-F18. During the spring, the MHS and SSMIS-

F16 are the minimum and maximum error contribu-

tors per unit area, respectively, for both hit and

missed-rain biases. During summer, MetOp-B and

TMI produce the lowest and highest biases per grid,

respectively. The false-rain bias contribution to the

total bias diminishes for all sensors during both spring

and summer (likely due to a decrease in snow-covered

surfaces). In the fall, TMI produces the largest error

biases for all error components per unit area, whereas

the remaining sensors contribute roughly the same

magnitude of error. In summary, the current version

of the 3B42RT algorithm appears to have lower biases

related to false precipitation than were associated

with previous versions of the algorithm. Specifically,

earlier studies (Tian et al. 2009; Gebregiorgis and

Hossain 2014) reported that 3B42RT had substantial

false-rain biases overland, particularly in theMidwest.

This study reveals that the false-rain bias contribution

to the total bias is minimal and that missed-rain bias

remains a major source of error in the 3B42RT

product.

5. Conclusions

This study investigates the characteristics of satellite

precipitation error by decomposing the error compo-

nents based on sensor type and eventually traces and

quantifies the magnitude of errors produced byMWand

IR sensors. The 3B42RT precipitation estimates ob-

tained from TMI, SSMIS-F16, SSMIS-F17, SSMIS-F18,

MHS, MetOp-B, AMSU–MHS average, conical aver-

age, and IR are investigated. Ground-based radar data

(MRMS) are utilized as reference data to evaluate the

error characteristics of the aforementioned satellite

precipitation estimates for the period from 2 January

2013 to 31 December 2014. The major findings of this

study can be summarized as follows:

1) Since precipitation estimates from ground-based

weather radars can be influenced by several error

sources (Kirstetter et al. 2015), the reference data

should be quality controlled prior to being used to

evaluate the performance of satellite precipitation

estimates. Validation without data quality assess-

ment could lead to the product being misunderstood

and result in incorrect conclusions. Therefore, before

FIG. 14. The contribution of error components from the MW sensors used in level-3 TRMM product. The y axis shows the seasonal

average error (mm) normalized by the number of grids.
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using the reference data (MRMS) for the purposes of

validation and analysis of satellite precipitation

estimates, a threshold of RQI (specifically requiring

the RQI to be its maximum value) has been imposed

to ensure the highest possible reference quality.

Comparisons with and without the RQI threshold

demonstrate that this quality-control step has a no-

ticeable impact on the analysis and interpretations of

results. Ensuring the accuracy, timeliness, complete-

ness, and consistency of data before using for any

application ensures that satellite precipitation data

users and algorithm developers have a common

understanding of what the data represent.

2) The magnitude of error associated with the IR pre-

cipitation estimates is considerably higher than the

error associated with the MW estimates. Specifically,

in the case of false precipitation, the magnitude of the

IR error is 2–10 times higher than the MW, the IR

missed-rain bias is double that of the MW, and both

precipitation estimates exhibit nearly the same mag-

nitude of positive hit bias (with a few exceptions)

during the study period (2013/14). Positive hit bias and

missed precipitation are the major sources of error for

MW estimates, whereas all three error components

play a significant role in building the total bias in the

IR estimates. This result is expected as MW-observed

quantities (i.e., Tb) are more physically linked to

precipitation properties than IR-observed quantities.

In general, the false-rain bias associated with the

current MW retrieval algorithm is lower in magnitude

than the false-rain bias associated with previous

versions of the algorithm analyzed in earlier studies

(e.g., Tian et al. 2009). However, there is still plenty

of room for improvement, as substantial missed-

precipitation and hit biases still exist.

3) Another important finding is that the contribution of

error from MW sensors varies seasonally. For exam-

ple, TMI contributes the highest missed-rain and

positive hit biases per grid during the summer and

fall seasons. Regarding missed precipitation, SSMIS-

F17 and SSMIS-F16 are the major error contributors

during the winter and spring, respectively. On the

other hand, MHS andMetOp-B produce the smallest

portion of hit andmissed-rain biases. Sample size and

area coverage are the most important factors that

need to be considered in the performance analysis of

sensors. The other aspect, which needs to be consid-

ered, is the type of sensors (imagers or sounders).

Both sensors have different scanning patterns: im-

agers are conically scanning sensors while sounders

are cross track. Both cross-track and conical-scanning

sensors use different retrievals. A more compre-

hensive evaluation of a given sensor’s performance

is possible for sensors with high sampling frequency

and high spatial coverage. Because of the limited

sampling coverage for MetOp-B (less than 5% in

most parts of the CONUS), its capability to estimate

precipitation in different conditions (e.g., diverse

geographic setups and different precipitation sys-

tems) could not be verified. However, MHS, which

has better spatial coverage and sampling frequency,

contributes the minimum error to the final level-3

product.

4) To get more insight of the error structure created

within individual sensors, it is helpful to decompose

the total bias into its components. These error

components sometimes add up to build the total bias

(such as negative hit and missed-rain biases or

positive hit and false-rain biases) and sometimes

cancel each other out. In general, the errors origi-

nating from IR sensors (false- and missed-rain

biases) are often associated with the screening stage

of the algorithm process (rain/no-rain detection

capability). But in terms of the hit bias (error

associated with retrieval stage of the algorithm),

bothMWand IR sensors exhibit closer performance.

In summary, this study has detailed some of the main

error characteristics inherited in multisensor gridded

satellite precipitation estimates and has expressed these

error characteristics as functions of space, time, season,

and sensor type. In addition to segregating precipitation

estimates based on the source of the estimates, it is also

important to segregate precipitation estimates on the

basis of geophysical (such as topography and surface

types, land use and land cover, etc.) and precipitation

(such as precipitation type, i.e., convective or stratiform)

parameters. Given the fine spatial resolution of its level-

3 products, the IMERG is the best satellite precipitation

product to test the aforementioned concept. Therefore,

future research will focus on evaluating IMERG prod-

ucts on the basis of sensor type and various geophysical

and precipitation parameters.
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